Climate change is expected to aggravate wildfire activity through the exacerbation of fire weather. Improving our capabilities to anticipate wildfires on a global scale is of uttermost importance for mitigating their negative effects. In this work, we create a global fire dataset and demonstrate a prototype for predicting the presence of global burned areas on a sub-seasonal scale with the use of segmentation deep learning models. Particularly, we present an open-access global analysis-ready datacube, which contains a variety of variables related to the seasonal and sub-seasonal fire drivers (climate, vegetation, oceanic indices, human-related variables), as well as the historical burned areas and wildfire emissions for 2001-2021. We train a deep learning model, which treats global wildfire forecasting as an image segmentation task and skillfully predicts the presence of burned areas 8, 16, 32 and 64 days ahead of time. Our work motivates the use of deep learning for global burned area forecasting and paves the way towards improved anticipation of global wildfire patterns.
translated by 谷歌翻译
Foundation models are redefining how AI systems are built. Practitioners now follow a standard procedure to build their machine learning solutions: download a copy of a foundation model, and fine-tune it using some in-house data about the target task of interest. Consequently, the Internet is swarmed by a handful of foundation models fine-tuned on many diverse tasks. Yet, these individual fine-tunings often lack strong generalization and exist in isolation without benefiting from each other. In our opinion, this is a missed opportunity, as these specialized models contain diverse features. Based on this insight, we propose model recycling, a simple strategy that leverages multiple fine-tunings of the same foundation model on diverse auxiliary tasks, and repurposes them as rich and diverse initializations for the target task. Specifically, model recycling fine-tunes in parallel each specialized model on the target task, and then averages the weights of all target fine-tunings into a final model. Empirically, we show that model recycling maximizes model diversity by benefiting from diverse auxiliary tasks, and achieves a new state of the art on the reference DomainBed benchmark for out-of-distribution generalization. Looking forward, model recycling is a contribution to the emerging paradigm of updatable machine learning where, akin to open-source software development, the community collaborates to incrementally and reliably update machine learning models.
translated by 谷歌翻译
In an era of countless content offerings, recommender systems alleviate information overload by providing users with personalized content suggestions. Due to the scarcity of explicit user feedback, modern recommender systems typically optimize for the same fixed combination of implicit feedback signals across all users. However, this approach disregards a growing body of work highlighting that (i) implicit signals can be used by users in diverse ways, signaling anything from satisfaction to active dislike, and (ii) different users communicate preferences in different ways. We propose applying the recent Interaction Grounded Learning (IGL) paradigm to address the challenge of learning representations of diverse user communication modalities. Rather than taking a fixed, human-designed reward function, IGL is able to learn personalized reward functions for different users and then optimize directly for the latent user satisfaction. We demonstrate the success of IGL with experiments using simulations as well as with real-world production traces.
translated by 谷歌翻译
The goal of autonomous vehicles is to navigate public roads safely and comfortably. To enforce safety, traditional planning approaches rely on handcrafted rules to generate trajectories. Machine learning-based systems, on the other hand, scale with data and are able to learn more complex behaviors. However, they often ignore that agents and self-driving vehicle trajectory distributions can be leveraged to improve safety. In this paper, we propose modeling a distribution over multiple future trajectories for both the self-driving vehicle and other road agents, using a unified neural network architecture for prediction and planning. During inference, we select the planning trajectory that minimizes a cost taking into account safety and the predicted probabilities. Our approach does not depend on any rule-based planners for trajectory generation or optimization, improves with more training data and is simple to implement. We extensively evaluate our method through a realistic simulator and show that the predicted trajectory distribution corresponds to different driving profiles. We also successfully deploy it on a self-driving vehicle on urban public roads, confirming that it drives safely without compromising comfort. The code for training and testing our model on a public prediction dataset and the video of the road test are available at https://woven.mobi/safepathnet
translated by 谷歌翻译
可识别表示学习的理论旨在构建通用方法,从低水平的感觉数据中提取高级潜在(因果)因素。大多数现有的作品都集中在可识别的表示学习中,并依赖于对潜在因素(因果)因素的分配假设。但是,实际上,我们通常还可以访问用于表示学习的介入数据。我们如何利用介入数据来帮助识别高级潜在的潜伏期?为此,我们探讨了在这项工作中可识别的代表学习中介入数据的作用。我们研究潜在因果因素在没有介入数据的情况下,在未介入数据的情况下,在最小的分布假设上。我们证明,如果真实的潜在变量通过多项式函数映射到观察到的高维数据,则通过最小化自动装饰器的标准重建损失来表示学习,将确定真正的潜在潜在的潜在潜在转化。如果我们进一步访问了由硬$ $ do $ $干预产生的干预数据,那么我们就可以识别出这些干预潜在的潜在潜在的潜在潜在的潜在潜在的潜在潜在的潜伏期。
translated by 谷歌翻译
拆分计算已成为实现基于DNN的AI工作负载的最新范例,其中DNN模型分为两个部分,其中一个是在移动/客户端设备上执行的,另一部分是在边缘服务器(或cloud)上执行的。 。数据压缩适用于需要传输的DNN的中间张量,以应对优化速率准确性复杂性权衡的挑战。现有的拆分计算方法采用基于ML的数据压缩,但要求将整个DNN模型的参数(或其中的大部分)用于不同的压缩级别。这会产生高的计算和存储负担:训练从头开始的完整DNN模型在计算上是要求的,维持DNN参数的多个副本会增加存储要求,并在推断期间切换全套权重增加内存带宽。在本文中,我们提出了一种解决所有这些挑战的方法。它涉及瓶颈单元的系统设计和训练 - 简单,低成本的神经网络 - 可以在分裂点插入。与现有方法相比,在训练和推理期间,在训练和推理期间,高效和储存额的一小部分,我们的方法都非常轻巧。
translated by 谷歌翻译
仔细构建和介绍了一系列包含文本和数字的页面,这些页面是一系列页面,并仔细构建并呈现,以便将知识最佳地转移给学生。先前在多媒体和心理学方面的研究将演讲的有效性归因于其多模式的性质。为了开发AI的一步,以帮助学生学习作为智能教师助理,我们将多模式演讲演示文稿数据集作为大规模的基准测试,以测试机器学习模型在多模式了解教育内容的能力。我们的数据集包含一个对齐的幻灯片和口语,用于180多个小时的视频和9000多个幻灯片,其中10位来自各种主题的讲师(例如,计算机科学,牙科,生物学)。我们介绍了两项研究任务,它们被设计为对AI代理商的垫脚石,这些阶梯可以解释(自动为演讲演示字幕),并说明(综合视觉图形以伴随口语解释)教育内容。我们提供手动注释,以帮助执行这两项研究任务并评估其最新模型。比较基线和人类学生的表现,我们发现当前模型在(1)幻灯片和口语文本之间的较弱的跨模式对齐中挣扎,(2)学习新颖的视觉介质,(3)技术语言和(4)(4)远程序列。为了解决这个问题,我们还引入了Polyvilt,这是一种多模式变压器,经过多种模式的学习损失,比目前的方法更有效。最后,我们阐明了对教育演示的多模式理解的挑战和机遇。
translated by 谷歌翻译
人重新识别(人REID)模型的现有评估指标着重于系统范围的性能。但是,我们的研究揭示了由于摄像机之间的数据分布不平的弱点和将REID系统暴露于剥削的不同摄像头性能。在这项工作中,我们提出了长期以来的摄像机性能不平衡问题,并从38个摄像机中收集了现实世界中的隐私意识数据集,以帮助研究不平衡问题。我们提出了新的指标来量化摄像机性能不平衡,并进一步提出了对抗性成对的反向关注(APRA)模块,以指导模型学习摄像机不变特征,并具有新颖的成对注意反转机制。
translated by 谷歌翻译
考虑互动学习的问题设定(IGL),其中学习者的目标是与环境进行最佳互动,而无需明确的奖励以依靠其政策。代理商观察上下文向量,采取行动并接收反馈向量,并使用此信息有效地优化潜在奖励功能的策略。当反馈向量包含该动作时,事先分析的方法失败了,这在许多潜在方案中显着限制了IGL的成功,例如脑部计算机界面(BCI)或人类计算机界面(HCI)应用程序。我们通过创建算法和分析来解决这一问题,该算法和分析即使反馈向量包含以任何方式编码的动作,允许IGL起作用。我们根据监督数据集提供理论保证和大规模实验,以证明新方法的有效性。
translated by 谷歌翻译
混音是在语音事件中混合两种或多种语言的一种现象,并且在多语言社会中很普遍。鉴于代码混合的低资源性质,代码混合文本的机器生成是数据增强的普遍方法。但是,评估该机器生成的代码混合文本的质量是一个开放问题。在与INLG2022相处的共享任务的Hinglisheval提交时,我们尝试通过预测代码混合质量的评分来构建影响合成生成的代码混合文本质量的模型因素。
translated by 谷歌翻译